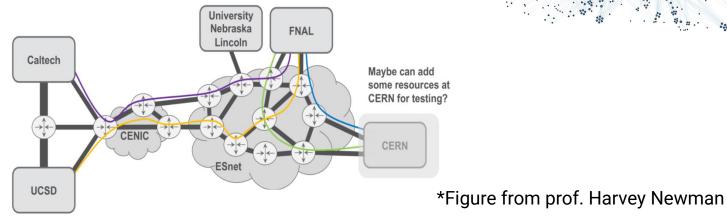
GNA-G community VC - Q4 #2: December 6th, 2023

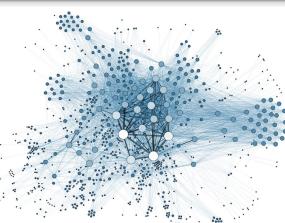
PolKA routing approach to support traffic engineering for data-intensive science

Magnos Martinello², <u>Rafael S. Guimarães</u>¹, Everson Borges², Cristina Klippel Dominicini¹, Diego Maffioletti¹, Jordi Ros-Giralt³, Edgard Cunha² and Harvey Newman ⁴

¹Federal Institute of Espírito Santo, ²Federal University of Espírito Santo, ³Qualcomm Europe, Inc. ⁴Caltech - California Institute of Technology

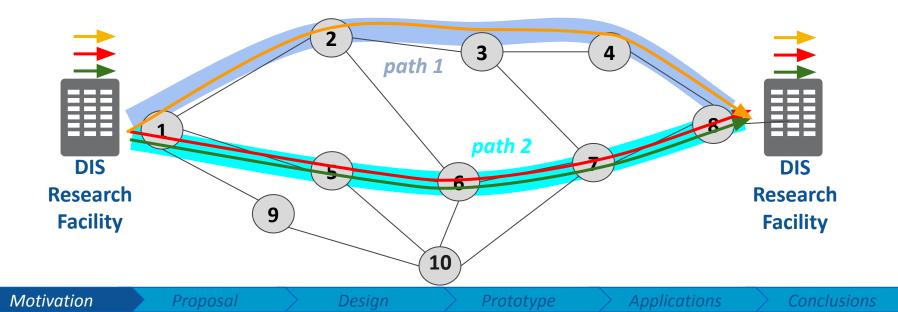
Contact: <u>rafaelg@ifes.edu.br</u>


• Motivation


- Proposal
- Design
- Deployment
- Demonstration
- Conclusions

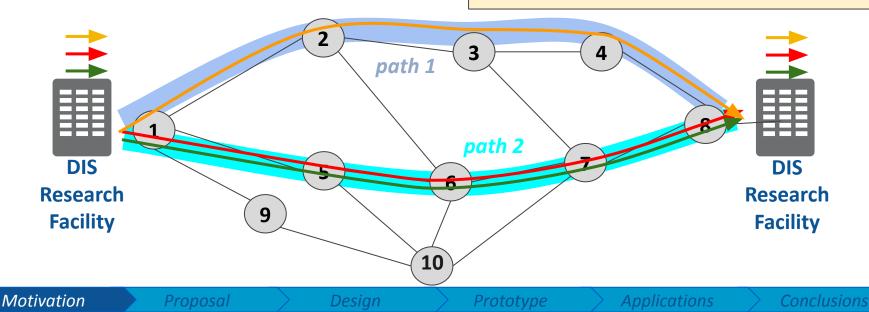
Motivation

• Data-Intensive Science (DIS) requirements :


- High-speed WAN networks
- Massive data transfer & Large number of flows
- E2E reliability and performance (traffic engineering)
- Multiple domains

Data Intensive Science Requirements

- High Speed Networks (>= 100Gbps)
- Big Data Streams
- Multiple Flows Aggregation


Data Intensive Science Requirements

- High Speed Networks (>= 100gbps)
- Big Data Streams
- Multiple Flows Aggregation

How can we dynamically configure... ... big pipes/tunnels

... in the underlay network

... to support these requirements?

Bottlenecks in traditional solutions

• DIS requirements:

- High-speed WAN networks
- Massive data transfer & Large number of flows
- E2E reliability
- Multiple domains

• Table-based forwarding bottlenecks:

- Set of shortest paths \rightarrow Traffic Engineering
- Large number of states \rightarrow Scalability
- \circ Latency for path configuration \rightarrow Agility

Motivation

• DIS requirements:

- High-speed WAN networks
- Massive data transfer & Large number of flows
- E2E reliability
- Multiple domains

• Table-based forwarding bottlenecks:

- Set of shortest paths \rightarrow Traffic Engineering
- Large number of states \rightarrow Scalability
- \circ Latency for path configuration \rightarrow Agility

Endpoints with no control over paths

Sub Utilization

Ossification

Bad Congestion Detection/Avoidance

Motivation

• DIS requirements:

- High-speed WAN networks
- Massive data transfer & Large number of flows
- E2E reliability
- Multiple domains

• Table-based forwarding bottlenecks:

- Set of shortest paths \rightarrow Traffic Engineering
- Large number of states \rightarrow Scalability
- Latency for path configuration \rightarrow Agility

• Alternative to tackle this: Source Routing (SR)

• A source specifies a path and adds a route label to the packet header.

Bad Congestion Detection/Avoidance

Subutilization

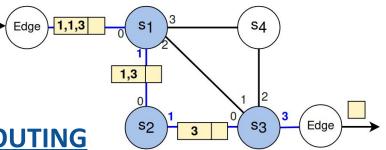
Ossification

control over paths

No endpoint

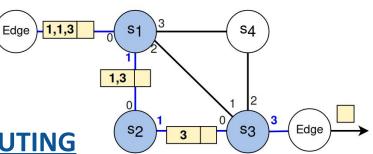
Motivation

Design


Prototype

• •

Applications


Source Routing (SR)

- Traditional way: List-based SR (LSR)
 - Path: a list of ports or addresses.
 - Each node performs a pop.
- Most remarkable protocol: <u>SEGMENT ROUTING</u>

Source Routing (SR)

- Traditional way: List-based SR (LSR)
 - Path: a list of ports or addresses.
 - Each node performs a pop.
- Most remarkable protocol: <u>SEGMENT ROUTING</u>
- Limitations :
 - Expensive equipment & proprietary implementations
 - Still depends on tables in the core nodes (MPLS)
 - Variable-length of headers (and big headers for both SRV4 and SRv6)
 - No multicast* https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2019/pdf/BRKIPM-2249.pdf

- Motivation
- Proposal
- Design
- Deployment
- Demonstration
- Conclusions

PolKA Proposal

• A Source Routing approach that meets the requirements:

- PolKA: Polynomial Key-based Architecture for Source Routing
 - Polynomial Residue Number System (RNS)
 - Chinese Remainder Theorem (CRT)
 - Packet forwarding based on mod operation: **remainder of division**

- Motivation
- Proposal
- Design
- Deployment
- Demonstration
- Conclusions

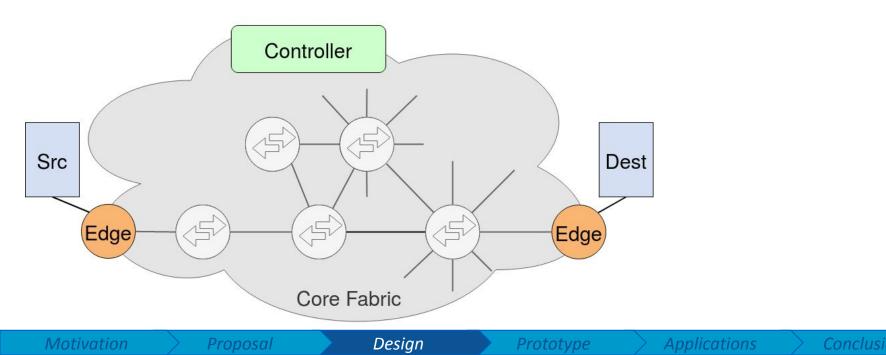
How does **Pol**ynomial **K**ey-based **A**rchitecture work?

• Three polynomials:

Motivation

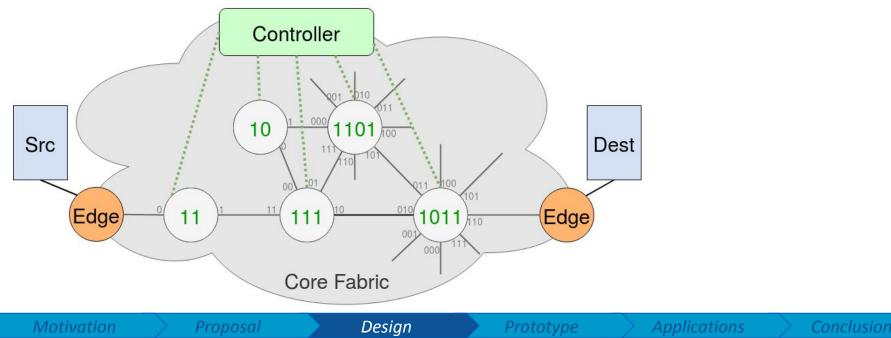
- **routeID**: a route identifier calculated using the CRT.
- **nodeID**: to identify each core node.
 - Irreducible polynomial which is a prime number representation in GF2
- **portID**: to identify the port or a set of ports on each core node.

• The forwarding uses a **mod** operation (remainder of division):

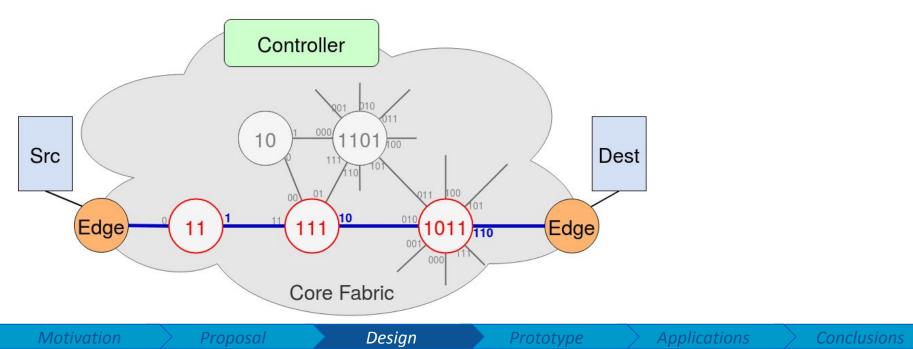

Design

portID = < routeID >
nodeID

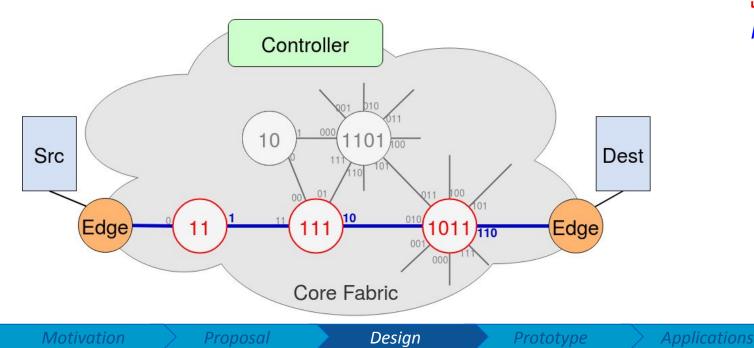
Applications


Simple example of how PolKA works

- Hosts are connected to edge switches.
- Edges are connected to a fabric of **core switches**.


Configuration phase of PolKA network

- In a network set up phase, the Controller assigns irreducible polynomials to core switches (*nodelDs*).
- Port labels are represented as binary polynomials (*portIDs*).


Selecting a path for flow assignment

- The **Controller** chooses a **path** for a specific flow (proactively or reactively):
 - A set of switches: {0011,0111,1011}
 - and their output ports: {1, 10, 110}

Nodes and ports in their polynomial representation

- The **Controller** chooses a **path** for a specific flow:
 - A set of switches: {0011,0111,1011}
 - and their output ports: {1, 10, 110}


```
nodelD polynomials

s_1(t) = t + 1 = 11

s_2(t) = t^2 + t + 1 = 111

s_3(t) = t^3 + t + 1 = 1011

portID polynomials

o_1(t) = 1

o_2(t) = t = 10

o_3(t) = t^2 + t = 110
```

Computing the route-id with CRT

• The **Controller** calculates the *routeID* using CRT:

• Complexity:
$$\mathcal{O}(len(M)^2)$$
, where $M(t) = \prod_{i=1}^N s_i(t)$

nodelD polynomials $s_1(t) = t + 1 = 11$ $s_2(t) = t^2 + t + 1 = 111$ $s_3(t) = t^3 + t + 1 = 1011$ portID polynomials $o_1(t) = 1$ $o_2(t) = t = 10$ $o_3(t) = t^2 + t = 110$

Calculate routeID with CRT

$$t^{4} \equiv 1 \mod (t+1)$$

$$t^{4} \equiv t \mod (t^{2}+t+1)$$

$$t^{4} \equiv (t^{2}+t) \mod (t^{3}+t+1)$$

$$t^{4} \equiv 10000$$

Motivation Proposal Design Prototype Applications Conclusions 19

Packet forwarding by mod operation

• The **Controller** calculates the *routeID* using CRT:

• Complexity: $\mathcal{O}(len(M)^2)$, where $M(t) = \prod_{i=1}^N s_i(t)$

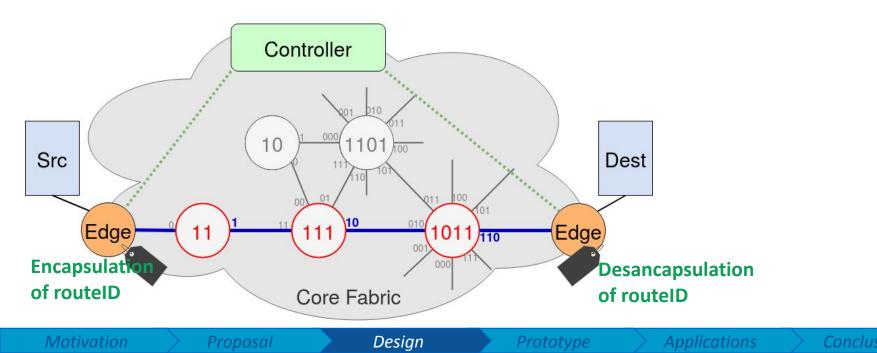
• Forwarding:

 portID = < routeID > nodeID

 1
 =
 <10000> 0011

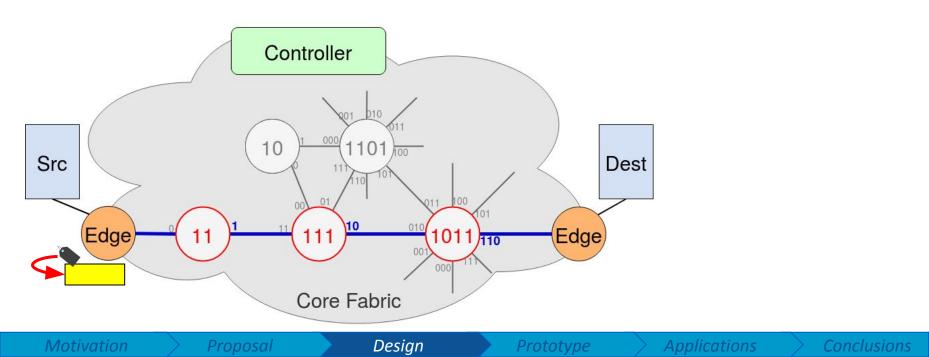
 10
 =
 <10000> 0111

 110
 =
 <10000> 1011

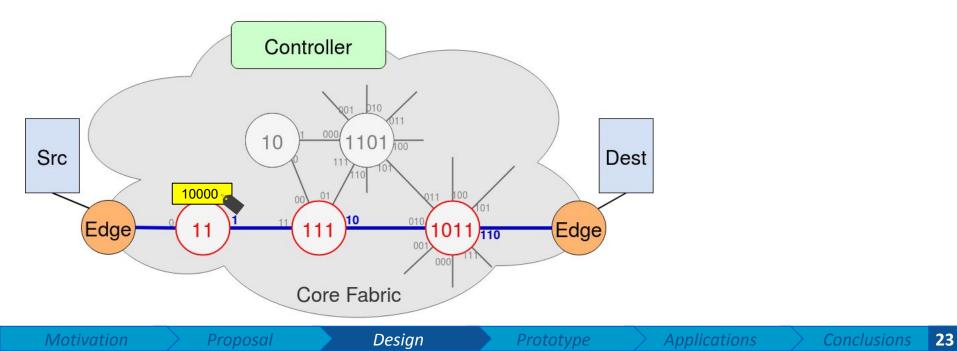

nodelD polynomials $s_1(t) = t + 1 = 11$ $s_2(t) = t^2 + t + 1 = 111$ $s_3(t) = t^3 + t + 1 = 1011$ portID polynomials $o_1(t) = 1$ $o_2(t) = t = 10$ $o_3(t) = t^2 + t = 110$

Calculate routeID with CRT $t^4 \equiv 1 \mod (t+1)$ $t^4 \equiv t \mod (t^2+t+1)$ $t^4 \equiv (t^2+t) \mod (t^3+t+1)$

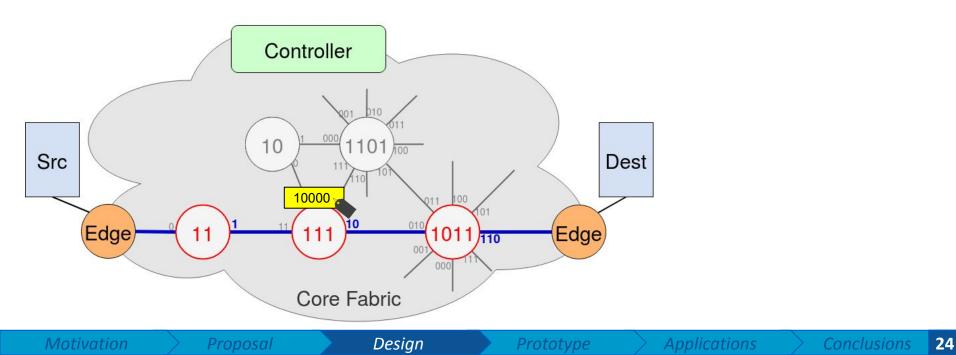
 $t^4 = 10000$


Installation of rules at the edges

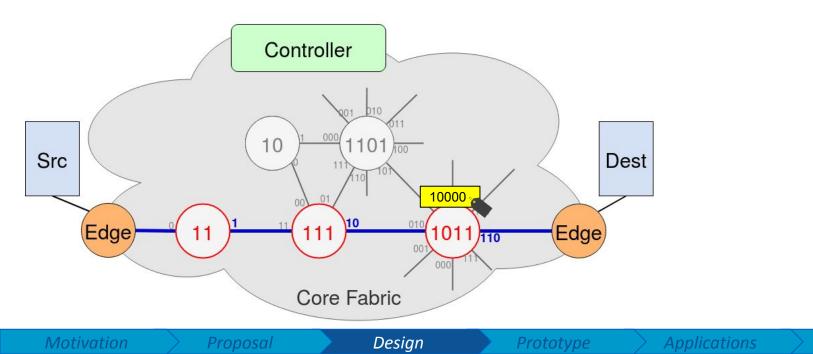
• The **Controller** installs **rules** at the edges to add/remove **routeIDs**.


Ingress edge adds the labels

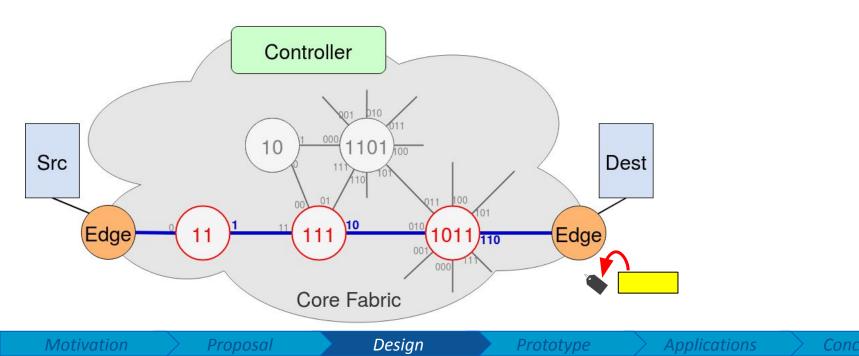
• When packets arrive, an action at ingress embeds *routeID* into the packets.


Packet forwarding at the core node

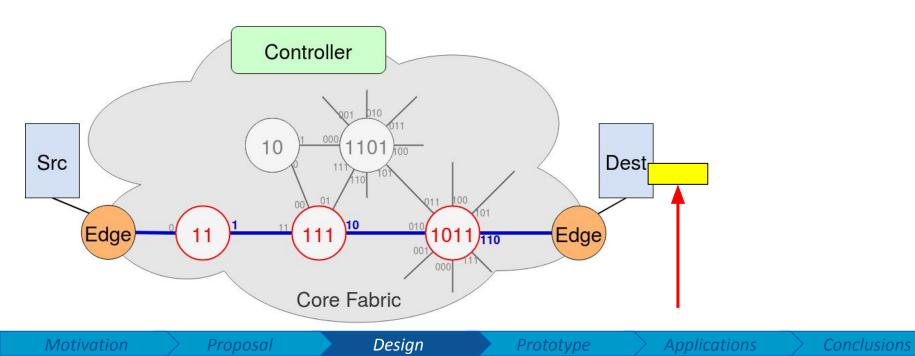
- Forwarding using **mod** operation: $<10000>_{0011} = 1 \rightarrow output port$
- Stateless core nodes with no routeID rewrite! No tables !


Packet forwarding at the core node

- Forwarding using **mod** operation: $<10000>_{0111} = 10 \rightarrow output port$
- No routeID rewrite! Tableless routing at stateless core !


Packet forwarding at the core node

- Forwarding using **mod** operation: $<10000>_{1011} = 110 \rightarrow output port$
- No routeID rewrite! No tables!


Egress edge removes the label

• Finally, an action at edge egress node removes *routeID*.

PolKA is agnostic of legacy protocols

Packet is delivered to the application in a transparent manner.

How to implement PolKA's in high speed line rate?

• P4 language does not natively support the mod operation.

- **CRC hardware** (Cyclic Redundancy Check) offers polynomial mod.
 - The Tofino Native Architecture (TNA) supports custom CRC polynomials.
 - Line rate MOD computation = 2 SHIFTs + 1 CRC + 2 XORs

- Motivation
- Proposal
- Design
- Deployment
- Demonstration
- Conclusions

Desic

Timeline

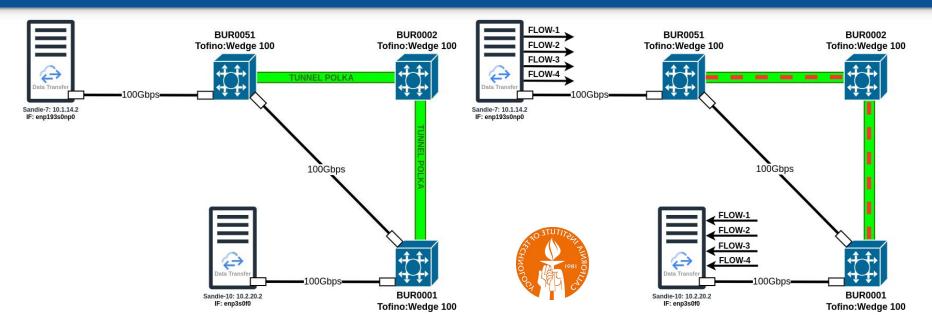
PolKA received the 2021 Google Research Scholar Award			M-PolKA received the Intel Connectivity Research Grant (Fast Forward Initiative)		
2020	20)21	2022	2	2023
PolKA paper IEEE NetSoft	ONDM paper Deploy @RARE	Integration with RARE+FreeRtr	M-PolKA paper IEEE TNSM	PolKA@Global P4 Lab	Proof-of-Transit paper IEEE NetSoft
Routing proposal based on RNS and reuse of CRC hardware		PolKA data & control plane implementation + integration	Extension to multipath SR for reliable communications	Deployment @Caltech SDN Lab Talk at LHC-ONE	PolKA Demo at SC-23
Emulated prototype in Mininet	Hardware prototype in Tofino	Emulated prototype in FreeRtr & Hardware prototype in Tofino w/ FreeRtr control plane	PolKA@pangr IETF 113 Lightning Talk Path Aware Networking	PolKA Demo at SC-22 M-PolKA talk at ONF	 Resilient routing with security compliance Inband Network Telemetry Optimal load balancing by G2
Motivation	Proposal	Design	Deployment D	emonstration	Conclusions 30

Innovations to be demonstrated

- Data plane
 - Source Routing with Stateless Core
 - Forwarding at line rate by **reusing CRC in P4** programmable switches
- Control plane
 - Easy to configure tunnels
 - Integrated in the FreeRtr platform
- Potential to support:
 - Transfer of big data streams with aggregation of multiple flows
 - Dynamic traffic steering configured at the edge

Demonstrations

- Big data streams at 100 Gbps
 - PolKA@ Caltech P4 lab testbed


A route label represents paths in the underlay network

• Multiple big data streams to achieve more than 100 Gbps

- PolKA@ Caltech P4 lab testbed at the SC 23
- Multiple aggregated TCP flows from different computers steering traffic to pre-configured tunnels
 - A route label represents paths in the underlay network

Big Data streams over PolKA tunnels at 100 Gbps in Caltech

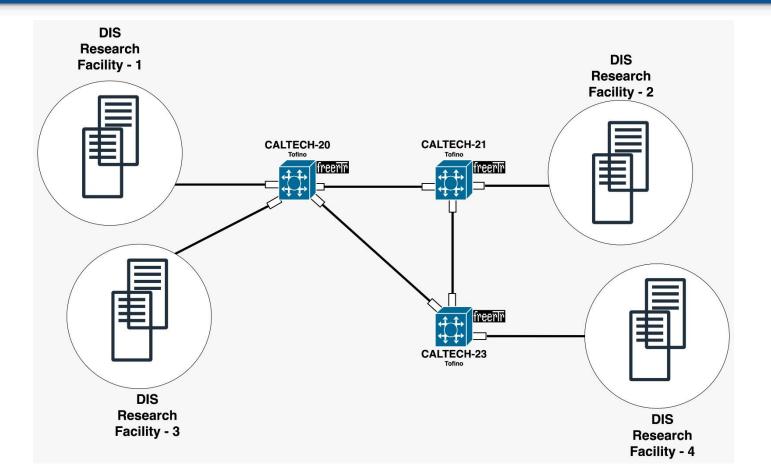
Big data streams over PolKA tunnels at 100 Gbps

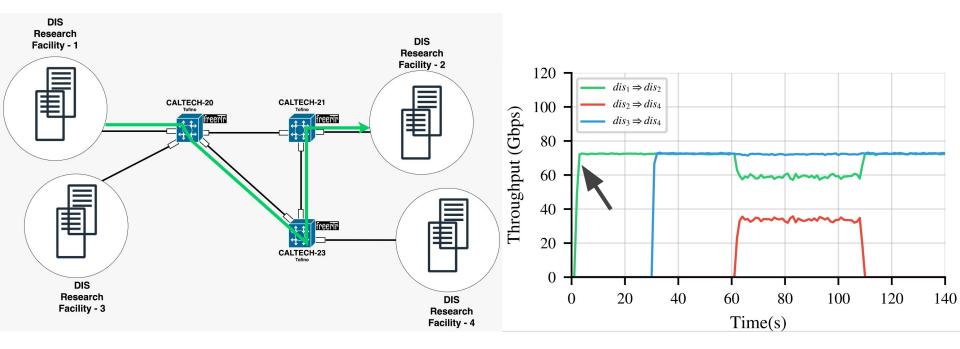
Motivation

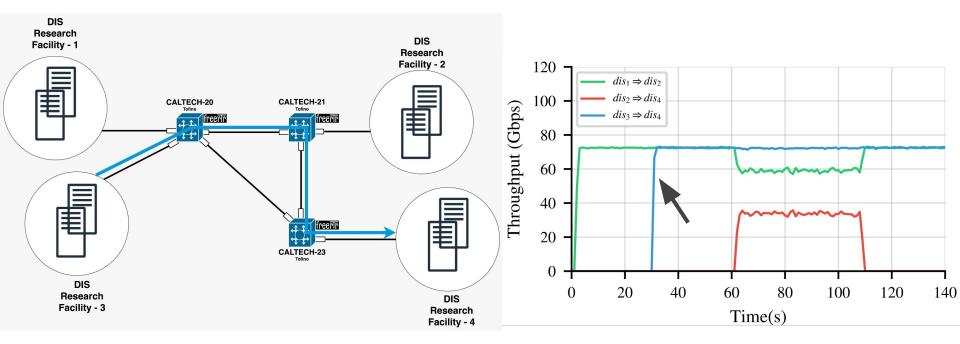
Proposa

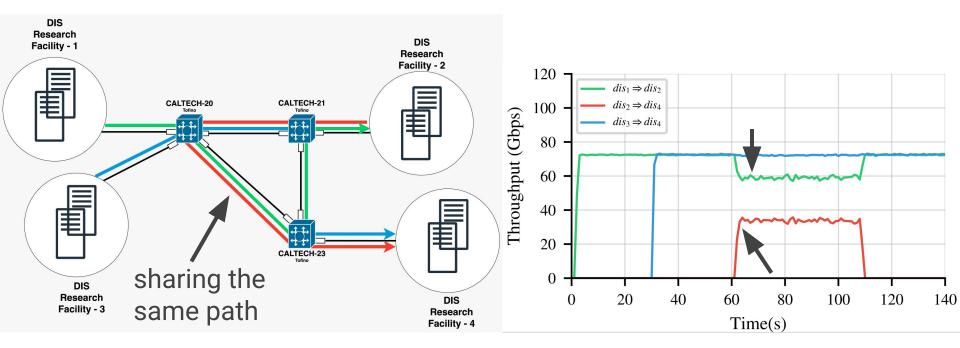
Des

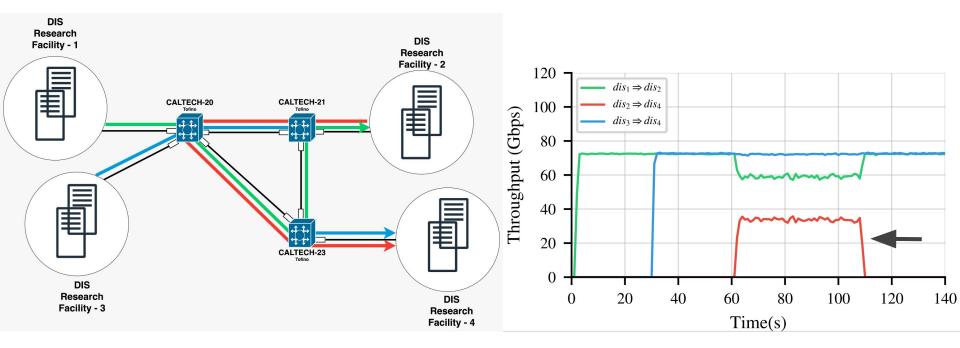
Prototype

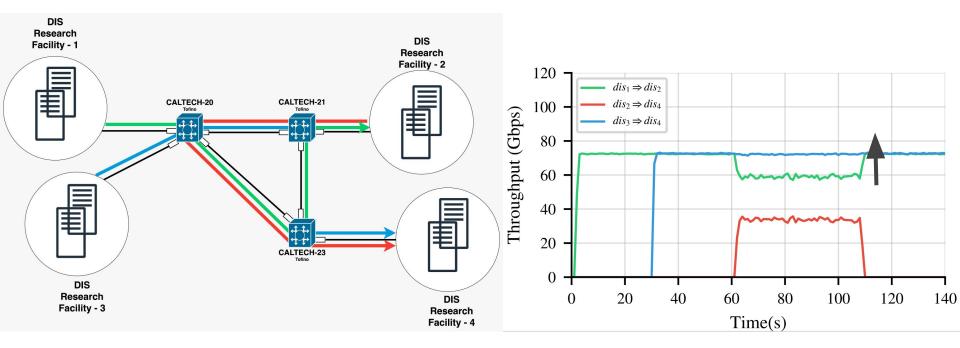

Big Data streams over PolKA tunnels at 100 Gbps in Caltech


Demonstrating PolKA routing approach to support traffic engineering for data-intensive science




Big Data streams over PolKA tunnels at Caltech Booth




Big Data streams over PolKA tunnels at Caltech Booth

Take away messages

- It is feasible to deploy PolKA in high-performance programmable network equipment by reusing CRC hardware.
 - PolKA deployment in Caltech P4 lab testbed demonstrated its performance achieving transfer rate > 100 Gbps to multiple aggregated flows (TCP)
- Easy to configure PolKA tunnels with a common standard (CLI) or REST API
- Potential to support
 - Big pipes/tunnels configured in a underlay network
 - Massive data transfer with aggregation of a large number of large flows
 - Flow Steering exploring PolKA properties (e.g. stateless core nodes)
 - Explicit path and TE both at the edge

Acknowledgments

- The framework provided by the GNA-G and the whole ecosystem of NRENs (Global P4 Lab) enabled the PolKA routing to be tested thanks to:
 - GNA-G Data Intensive Science WG
 - GNA-G AutoGOLE / SENSE WG
 - GEANT RARE Project
 - ... And all it's collaborating institutions and teams
- Collaboration with Caltech was crucial hosting us at the booth
- Provides all the resources (e.g. Tofinos + servers +...) to deploy it in a near production allowing us to demonstrate PolKA in the best conditions

PolKA Community, Partners and Collaborations

- **Caltech :** Professor Harvey Newman and Raimondas Širvinskas
- RARE GÉANT: Frédéric Loui, Csaba Mate, Eoin Kenny
- **RNP:** Marcos Schwarz
- **Qualcomm**: Jordi Ros Giralt
- Trinity College Dublin (Connect): Marco Ruffini and Frank Slyne
- CNPq and FAPES (Brazilian research funding agencies)
- 2021 Google Research Scholar Award
- 2022 Intel Connectivity Research Grant (Fast Forward Initiative)
- University of Waikato (NZ)

Selection of Our Recent Publications

- <u>In-situ Proof-of-Transit for Path-Aware Programmable Networks</u> (IEEE NetSoft, 2023)
- <u>M-PolKA: Multipath Polynomial Key-based Source Routing for Reliable Communications</u> (IEEE TNSM, 2022)
- <u>Chaining-Box: A Transparent Service Function Chaining Architecture Leveraging BPF</u> (IEEE TNSM, 2021)
- <u>Programmable Switches for in-Networking Classification</u> (IEEE INFOCOM, 2021)
- <u>Deploying PolKA Source Routing in P4 Switches (ONDM, 2021)</u>
- PolKA: Polynomial Key-based Architecture for Source Routing in Network Fabrics (IEEE NetSoft, 2020)
- <u>PIaFFE: A Place-as-you-go In-network Framework for Flexible Embedding of VNFs</u> (IEEE ICC, 2020)
- <u>ProgLab: Programmable labels for QoS provisioning on software defined networks</u> (Computer Comm, 2020)
- <u>KeySFC: Traffic steering using strict source routing for dynamic and efficient network orchestration</u> (Computer Networks, 2020)
- <u>FUTEBOL Control Framework: Enabling Experimentation in Convergent Optical, Wireless, and Cloud</u> <u>Infrastructures</u> (IEEE COMMUNICATIONS MAGAZINE, 2019)
- RDNA: Residue-defined networking architecture enabling ultra-reliable low-latency datacenters (IEEE TNSM, 2018)

Additional references

- 1. Global Network Advancement Group: Towards a Next Generation System for Data Intensive Sciences
- 2. Documentation: Let's enable PolKA in freeRtr
- 3. PolKA presentation at Google Research Scholar Award
- 4. Multipath PolKA presentation at ONF 2022
- 5. <u>PolKA github</u>
- 6. <u>RARE website</u>
- 7. <u>FreeRouter website</u>
- 8. <u>LabNERDS Videos</u>
- 9. PolKA NetSoft 2020 conference paper
- 10. V. Shoup, A computational introduction to number theory and algebra, 2008.

PolKA: Github

- <u>https://nerds-ufes.github.io/polka/</u>
 - \circ References
 - Tutorials (Mininet and FreeRouter)
 - Wireshark dissector
 - More to come...

21 18.843071 14.14.14.1 15.15.15.1 ICMP 148 Echo (ping) request id=0x3ed8, set			। 🛛 🖸 🤇		a-dissector.pcapng	
18 18.841217 15.15.15.1 14.14.14.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 19 18.841585 14.14.14.1 15.15.15.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 20 18.842597 15.15.15.1 14.14.14.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 21 18.843071 14.14.14.1 15.15.15.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 21 18.843071 14.14.14.1 15.15.15.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 22 18.843762 15.15.15.1 14.14.14.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 22 18.843762 15.15.15.1 14.14.14.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 22 18.843762 15.15.15.1 14.14.14.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 22 18.843762 15.15.15.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 24 Recho eping reply id=0x3ed8 see <td></td> <td></td> <td>Source</td> <td>Destination</td> <td>Protocol</td> <td></td>			Source	Destination	Protocol	
 19 18.841585 14.14.14.1 15.15.15.1 ICMP 148 Echo (ping) request id=0x3ed8, see 20 18.842597 15.15.15.1 14.14.14.1 IS.15.15.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 21 18.843071 14.14.14.1 15.15.15.1 ICMP 148 Echo (ping) request id=0x3ed8, see 22 18.843762 15.15.15.1 14.14.14.1 IS.15.15.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 22 18.843762 15.15.15.1 14.14.14.1 IS.15.15.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 22 18.843762 IS.15.15.1 14.14.14.1 IS.15.15.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 22 18.843762 IS.15.15.1 14.14.14.1 IS.15.15.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 22 18.843762 IS.15.15.1 IA.14.14.1 IS.15.15.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 22 IS.15.15.1 IS.15.1 IS.15	10.	1.4.5.4.4	/		and the second se	
20 18.842597 15.15.15.1 14.14.14.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 21 18.843071 14.14.14.1 15.15.15.1 ICMP 148 Echo (ping) request id=0x3ed8, see 22 18.843762 15.15.15.1 14.14.14.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 22 18.843762 15.15.15.1 14.14.14.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 2 18.843762 15.15.15.1 14.14.14.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 2 18.843762 15.15.15.1 14.14.14.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 2 18.843762 15.15.15.1 14.14.14.1 ICMP 148 Echo (ping) reply id=0x3ed8, see 2 PolKA Header Protocol Version of PolKA TL: 255: Time to Live Type: 0x0800 :Type of Next Protocol Foute ID Foute: ID Foute: ID Internet Protocol Version 4, Src: 14.14.14.1, Dst: 15.15.15.1						
21 18.843071 14.14.14.1 15.15.15.1 ICMP 148 Echo (ping) request id=0x3ed8, see 22 18.843762 15.15.15.1 14.14.14.1 ICMP 148 Echo (ping) reply id=0x3ed8, see > Ethernet II, Src: Normerel_11:00:01 (00:00:11:11:00:01), Dst: Normerel_11:00:05 (00:00:11:11:00:05) PolKA Header Protocol > PolKA Header Protocol Version of PolKA TTL: 255 :Time to Live Type: 0x0800 :Type of Next Protocol Routeid: 0000000-0000-0000-75fa-2d5813524bf9 :Route ID Internet Protocol Version 4, Src: 14.14.14.1, Dst: 15.15.15.1	-					
22 18.843762 15.15.15.1 14.14.14.1 ICMP 148 Echo (ping) replyid=0x3ed8, see > Ethernet II, Src: Normerel_11:00:01 (00:00:11:11:00:01), Dst: Normerel_11:00:05 (00:00:11:11:00:05) PolKA Header Protocol Version: 0 :Version of PolKA TTL: 255 :Time to Live Type: 0x0800 :Type of Next Protocol Routeid: 0000000-0000-75fa-2d5813524bf9 :Route ID > Internet Protocol Version 4, Src: 14.14.14.1, Dst: 15.15.15				15.15.15.1	ICMP	
V PolKA Header Protocol Version: 0 :Version of PolKA TTL: 255 :Time to Live Type: 0x0800 :Type of Next Protocol Routeid: 0000000-0000-75fa-2d5813524bf9 :Route ID > Internet Protocol Version 4, Src: 14.14.14.1, Dst: 15.15.15.1		22 18,843762	15.15.15.1	14.14.14.1	ICMP	
	E+b		1 11.00.01 /00.00.	11:11:00:01) Det: Normeral		

46

Thank you for attention !

<u>Rafael Guimarães</u>

rafaelg@ifes.edu.br

* This work was a recipient of the 2021 Google Research Scholar and the 2022 Intel Connectivity Research Grant (Fast Forward Initiative) Awards, and Received funds from CAPES (Finance Code 001), CNPq, FAPESP, FAPES, CTIC, and RNP.

Ok... Why should I use PolKA?

• One good reason...

... It is easy to setup paths/tunnels!

- It has some interesting properties that enable innovative applications.
 - Ex: multicast communication model support, multipath routing, failure protection, Proof of Transit, telemetry...
- Open source implementation in software and in hardware
 - RARE/FreeRtr