
PolKA routing approach to support

traffic engineering for data-intensive science

Magnos Martinello2, Rafael S. Guimarães1, Everson Borges2, Cristina Klippel Dominicini1,

Diego Maffioletti1, Jordi Ros-Giralt3, Edgard Cunha2 and Harvey Newman 4

1Federal Institute of Espírito Santo, 2Federal University of Espírito Santo, 3Qualcomm Europe, Inc.
4Caltech - California Institute of Technology

Contact: rafaelg@ifes.edu.br

3Caltech - California Institute of Technology

Contact: rafaelg@ifes.edu.br

GNA-G community VC - Q4 #2: December 6th, 2023

mailto:magnos.martinello@ufes.br
mailto:magnos.martinello@ufes.br

Agenda

● Motivation

● Proposal

● Design

● Deployment

● Demonstration

● Conclusions

ConclusionsApplicationsPrototypeDesignProposalMotivation 2

Motivation

ConclusionsApplicationsPrototypeDesignProposalMotivation 3

● Data-Intensive Science (DIS) requirements :
○ High-speed WAN networks
○ Massive data transfer & Large number of flows
○ E2E reliability and performance (traffic engineering)
○ Multiple domains

*Figure from prof. Harvey Newman

Data Intensive Science Requirements

● High Speed Networks (>= 100Gbps)
● Big Data Streams
● Multiple Flows Aggregation

2
3

9

5 7
6

4

81

10

DIS
Research
Facility

DIS
Research
Facility

path 1

path 2

ConclusionsApplicationsPrototypeDesignProposalMotivation 4

Data Intensive Science Requirements

● High Speed Networks (>= 100gbps)
● Big Data Streams
● Multiple Flows Aggregation

5

2
3

9

5 7
6

4

81

10

DIS
Research
Facility

DIS
Research
Facility

How can we dynamically configure…
… big pipes/tunnels
… in the underlay network
… to support these requirements?

path 1

path 2

ConclusionsApplicationsPrototypeDesignProposalMotivation 5

Bottlenecks in traditional solutions

● DIS requirements:
○ High-speed WAN networks
○ Massive data transfer & Large number of flows
○ E2E reliability
○ Multiple domains

● Table-based forwarding bottlenecks:
○ Set of shortest paths → Traffic Engineering
○ Large number of states → Scalability
○ Latency for path configuration → Agility

ConclusionsApplicationsPrototypeDesignProposalMotivation 6

Motivation

ConclusionsApplicationsPrototypeDesignProposalMotivation 7

● DIS requirements:
○ High-speed WAN networks
○ Massive data transfer & Large number of flows
○ E2E reliability
○ Multiple domains

● Table-based forwarding bottlenecks:
○ Set of shortest paths → Traffic Engineering
○ Large number of states → Scalability
○ Latency for path configuration → Agility

Sub Utilization

Ossification

Endpoints with no
control over paths

Bad Congestion
Detection/Avoidance

Motivation

● DIS requirements:
○ High-speed WAN networks
○ Massive data transfer & Large number of flows
○ E2E reliability
○ Multiple domains

● Table-based forwarding bottlenecks:
○ Set of shortest paths → Traffic Engineering
○ Large number of states → Scalability
○ Latency for path configuration → Agility

● Alternative to tackle this: Source Routing (SR)
○ A source specifies a path and adds a route label

to the packet header.

ConclusionsApplicationsPrototypeDesignProposalMotivation 8

Subutilization

Ossification

No endpoint
control over paths

Bad Congestion
Detection/Avoidance

● Traditional way: List-based SR (LSR)
○ Path: a list of ports or addresses.
○ Each node performs a pop.

● Most remarkable protocol: SEGMENT ROUTING

Source Routing (SR)

ConclusionsApplicationsPrototypeDesignProposalMotivation 9

● Traditional way: List-based SR (LSR)
○ Path: a list of ports or addresses.
○ Each node performs a pop.

● Most remarkable protocol: SEGMENT ROUTING

● Limitations :
○ Expensive equipment & proprietary implementations

○ Still depends on tables in the core nodes (MPLS)

○ Variable-length of headers (and big headers for both SRV4 and SRv6)

○ No multicast*

Source Routing (SR)

ConclusionsApplicationsPrototypeDesignProposalMotivation 10

https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2019/pdf/BRKIPM-2249.pdf

Agenda

ConclusionsApplicationsPrototypeDesignProposalMotivation 11

● Motivation

● Proposal

● Design

● Deployment

● Demonstration

● Conclusions

PolKA Proposal

ConclusionsApplicationsPrototypeDesignProposalMotivation 12

● A Source Routing approach that meets the requirements:

● PolKA: Polynomial Key-based Architecture for Source Routing
○ Polynomial Residue Number System (RNS)
○ Chinese Remainder Theorem (CRT)
○ Packet forwarding based on mod operation: remainder of division

support in
prog. switches

topology agnostic
multipath routing

no tables in
the core

fixed length
header

open source/
interoperable

Agenda

ConclusionsApplicationsPrototypeDesignProposalMotivation 13

● Motivation

● Proposal

● Design

● Deployment

● Demonstration

● Conclusions

How does Polynomial Key-based Architecture work?

● Three polynomials:

○ routeID: a route identifier calculated using the CRT.

○ nodeID: to identify each core node.

- Irreducible polynomial which is a prime number representation in GF2

○ portID: to identify the port or a set of ports on each core node.

● The forwarding uses a mod operation (remainder of division):

ConclusionsApplicationsPrototypeDesignProposalMotivation 14

portID = < routeID >
nodeID

14

Simple example of how PolKA works

● Hosts are connected to edge switches.

● Edges are connected to a fabric of core switches.

ConclusionsApplicationsPrototypeDesignProposalMotivation 1515

Configuration phase of PolKA network

● In a network set up phase, the Controller assigns irreducible polynomials
to core switches (nodeIDs).

● Port labels are represented as binary polynomials (portIDs).

ConclusionsApplicationsPrototypeDesignProposalMotivation 1616

Selecting a path for flow assignment

● The Controller chooses a path for a specific flow (proactively or reactively):
○ A set of switches: {0011,0111,1011}
○ and their output ports: {1 , 10, 110}

ConclusionsApplicationsPrototypeDesignProposalMotivation 1717

Nodes and ports in their polynomial representation

● The Controller chooses a path for a specific flow:
○ A set of switches: {0011,0111,1011}
○ and their output ports: {1 , 10, 110}

ConclusionsApplicationsPrototypeDesignProposalMotivation 18

nodeID polynomials

portID polynomials

18

● The Controller calculates the routeID using CRT:
○ Complexity: , where

Computing the route-id with CRT

ConclusionsApplicationsPrototypeDesignProposalMotivation 19

Calculate routeID with CRT

nodeID polynomials

portID polynomials
R = 10000

routeID

19

● The Controller calculates the routeID using CRT:
○ Complexity: , where

● Forwarding:

 Packet forwarding by mod operation

ConclusionsApplicationsPrototypeDesignProposalMotivation 20

Calculate routeID with CRT

1 = <10000>
0011

10 = <10000>
0111

110 = <10000>
1011

R = 10000

routeID

portID = < routeID >
nodeID

nodeID polynomials

portID polynomials

20

Installation of rules at the edges

ConclusionsApplicationsPrototypeDesignProposalMotivation 21

Encapsulation
of routeID

Desancapsulation
of routeID

● The Controller installs rules at the edges to add/remove routeIDs.

21

Ingress edge adds the labels

● When packets arrive, an action at ingress embeds routeID into the packets.

ConclusionsApplicationsPrototypeDesignProposalMotivation 2222

Packet forwarding at the core node

● Forwarding using mod operation: <10000>
0011

 = 1 → output port

● Stateless core nodes with no routeID rewrite! No tables !

ConclusionsApplicationsPrototypeDesignProposalMotivation 23

10000

23

● Forwarding using mod operation: <10000>
0111

 = 10 → output port

● No routeID rewrite! Tableless routing at stateless core !

ConclusionsApplicationsPrototypeDesignProposalMotivation 24

10000

Packet forwarding at the core node

24

● Forwarding using mod operation: <10000>
1011

 = 110 → output port

● No routeID rewrite! No tables!

ConclusionsApplicationsPrototypeDesignProposalMotivation 25

10000

Packet forwarding at the core node

25

Egress edge removes the label

● Finally, an action at edge egress node removes routeID.

ConclusionsApplicationsPrototypeDesignProposalMotivation 2626

PolKA is agnostic of legacy protocols

● Packet is delivered to the application in a transparent manner.

ConclusionsApplicationsPrototypeDesignProposalMotivation 2727

How to implement PolKA’s in high speed line rate?

● P4 language does not natively support the mod operation.

● CRC hardware (Cyclic Redundancy Check) offers polynomial mod.

○ The Tofino Native Architecture (TNA) supports custom CRC polynomials.

○ Line rate MOD computation = 2 SHIFTs + 1 CRC + 2 XORs

ConclusionsApplicationsPrototypeDesignProposalMotivation 28

Agenda

ConclusionsApplicationsDeploymentDesignProposalMotivation 29

● Motivation

● Proposal

● Design

● Deployment

● Demonstration

● Conclusions

ConclusionsDemonstrationDeploymentMotivation

Timeline

DesignProposal

2020 2021

PolKA paper
IEEE NetSoft

Routing proposal
based on RNS and
reuse of CRC
hardware

Emulated
prototype in
Mininet

ONDM paper
Deploy @RARE

PolKA data plane
implementation in
intercontinental
testbed

Hardware
prototype in
Tofino

PolKA received the 2021
Google Research Scholar Award

2022

M-PolKA paper
IEEE TNSM

Extension to
multipath SR for
reliable
communications

PolKA@pangr
IETF 113

Lightning Talk
Path Aware
Networking

Integration with
RARE+FreeRtr

PolKA data &
control plane
implementation +
integration

Emulated prototype
in FreeRtr &

Hardware prototype
in Tofino w/ FreeRtr
control plane

M-PolKA received the Intel Connectivity
Research Grant (Fast Forward Initiative)

PolKA@Global
P4 Lab

Deployment
@Caltech SDN
Lab

Talk at
LHC-ONE

PolKA Demo
 at SC-22

M-PolKA talk at
ONF

Proof-of-Transit
paper IEEE NetSoft

PolKA Demo at
SC-23

Innovative apps:

●Resilient routing with
security compliance

● Inband Network
Telemetry

● Optimal load
balancing by G2

2023

3030

Innovations to be demonstrated
● Data plane

○ Source Routing with Stateless Core
○ Forwarding at line rate by reusing CRC in P4 programmable switches

● Control plane
○ Easy to configure tunnels
○ Integrated in the FreeRtr platform

● Potential to support:
○ Transfer of big data streams with aggregation of multiple flows
○ Dynamic traffic steering configured at the edge

ConclusionsDemonstrationPrototypeDesignProposalMotivation 31

● Big data streams at 100 Gbps
○ PolKA@ Caltech P4 lab testbed
○ Multiple aggregated TCP flows steered to pre-configured tunnels

■ A route label represents paths in the underlay network

● Multiple big data streams to achieve more than 100 Gbps
○ PolKA@ Caltech P4 lab testbed at the SC 23
○ Multiple aggregated TCP flows from different computers steering traffic to

pre-configured tunnels
■ A route label represents paths in the underlay network

Demonstrations

Conclusions DemonstrationPrototypeDesignProposalMotivation 32

33

Big Data streams over PolKA tunnels at 100 Gbps in Caltech

Big data streams over PolKA tunnels at 100 Gbps

ConclusionsDemonstrationPrototypeDesignProposalMotivation 33

https://drive.google.com/file/d/1wZrdAxIC8DutXG_KZ7oxnU0AQibnMvHm/view

Big Data streams over PolKA tunnels at 100 Gbps in Caltech

34

https://docs.google.com/file/d/1wZrdAxIC8DutXG_KZ7oxnU0AQibnMvHm/preview

Big Data streams over PolKA tunnels at Caltech Booth

35

Big Data streams over PolKA tunnels at Caltech Booth

36

Big Data streams over PolKA tunnels at Caltech Booth

37

Big Data streams over PolKA tunnels at Caltech Booth

38

sharing the
same path

Big Data streams over PolKA tunnels at Caltech Booth

39

Big Data streams over PolKA tunnels at Caltech Booth

40

Take away messages

ConclusionsApplicationsPrototypeDesignProposalMotivation 41

● It is feasible to deploy PolKA in high-performance programmable
network equipment by reusing CRC hardware.
○ PolKA deployment in Caltech P4 lab testbed demonstrated its performance

achieving transfer rate > 100 Gbps to multiple aggregated flows (TCP)

● Easy to configure PolKA tunnels with a common standard (CLI) or REST API

● Potential to support
○ Big pipes/tunnels configured in a underlay network

○ Massive data transfer with aggregation of a large number of large flows

○ Flow Steering exploring PolKA properties (e.g. stateless core nodes)

■ Explicit path and TE both at the edge

Acknowledgments

ConclusionsApplicationsPrototypeDesignProposalMotivation 42

● The framework provided by the GNA-G and the whole ecosystem of NRENs
(Global P4 Lab) enabled the PolKA routing to be tested thanks to:
○ GNA-G Data Intensive Science WG
○ GNA-G AutoGOLE / SENSE WG
○ GEANT RARE Project
○ … And all it’s collaborating institutions and teams

● Collaboration with Caltech was crucial hosting us at the booth

● Provides all the resources (e.g. Tofinos + servers +...) to deploy it in a near
production allowing us to demonstrate PolKA in the best conditions

● Caltech : Professor Harvey Newman and Raimondas Širvinskas

● RARE GÉANT: Frédéric Loui, Csaba Mate, Eoin Kenny

● RNP: Marcos Schwarz

● Qualcomm: Jordi Ros Giralt

● Trinity College Dublin (Connect): Marco Ruffini and Frank Slyne

● CNPq and FAPES (Brazilian research funding agencies)

● 2021 Google Research Scholar Award

● 2022 Intel Connectivity Research Grant (Fast Forward Initiative)

● University of Waikato (NZ)

PolKA Community, Partners and Collaborations

ConclusionsApplicationsPrototypeDesignProposalMotivation 43

Selection of Our Recent Publications

● In-situ Proof-of-Transit for Path-Aware Programmable Networks (IEEE NetSoft, 2023)

● M-PolKA: Multipath Polynomial Key-based Source Routing for Reliable Communications (IEEE TNSM, 2022)

● Chaining-Box: A Transparent Service Function Chaining Architecture Leveraging BPF (IEEE TNSM, 2021)

● Programmable Switches for in-Networking Classification (IEEE INFOCOM, 2021)

● Deploying PolKA Source Routing in P4 Switches (ONDM, 2021)

● PolKA: Polynomial Key-based Architecture for Source Routing in Network Fabrics (IEEE NetSoft, 2020)

● PIaFFE: A Place-as-you-go In-network Framework for Flexible Embedding of VNFs (IEEE ICC, 2020)

● ProgLab: Programmable labels for QoS provisioning on software defined networks (Computer Comm, 2020)

● KeySFC: Traffic steering using strict source routing for dynamic and efficient network orchestration
(Computer Networks, 2020)

● FUTEBOL Control Framework: Enabling Experimentation in Convergent Optical, Wireless, and Cloud

Infrastructures (IEEE COMMUNICATIONS MAGAZINE, 2019)

● RDNA: Residue-defined networking architecture enabling ultra-reliable low-latency datacenters (IEEE TNSM, 2018)

44ConclusionsApplicationsPrototypeDesignProposalMotivation 44

https://ieeexplore.ieee.org/abstract/document/10175482
https://ieeexplore.ieee.org/document/9738811
https://ieeexplore.ieee.org/abstract/document/9585042
https://ieeexplore.ieee.org/abstract/document/9488840
https://ieeexplore.ieee.org/abstract/document/9492363
https://ieeexplore.ieee.org/abstract/document/9165501
https://ieeexplore.ieee.org/abstract/document/9149240
https://www.sciencedirect.com/science/article/abs/pii/S014036641931062X
https://www.sciencedirect.com/science/article/abs/pii/S138912861930194X
https://ieeexplore.ieee.org/abstract/document/8875715
https://ieeexplore.ieee.org/abstract/document/8875715
https://ieeexplore.ieee.org/abstract/document/8496859

Additional references

1. Global Network Advancement Group: Towards a Next Generation System for Data Intensive Sciences

2. Documentation: Let’s enable PolKA in freeRtr

3. PolKA presentation at Google Research Scholar Award

4. Multipath PolKA presentation at ONF 2022

5. PolKA github

6. RARE website

7. FreeRouter website

8. LabNERDS Videos

9. PolKA NetSoft 2020 conference paper

10. V. Shoup, A computational introduction to number theory and algebra, 2008.

ConclusionsApplicationsPrototypeDesignProposalMotivation 4545

https://youtu.be/lhb9ik5__1w
http://docs.freertr.org/guides/getting-started/007-polka/
https://youtu.be/68vsAWAM8C0
https://youtu.be/8nOBOnOdLvE
https://github.com/nerds-ufes/polka
https://wiki.geant.org/display/RARE
http://www.freertr.net/
https://www.youtube.com/@labnerds8908/videos
https://ieeexplore.ieee.org/abstract/document/9165501
https://shoup.net/ntb/ntb-v2.pdf

PolKA: Github

ConclusionsApplicationsPrototypeDesignProposalMotivation 46

● https://nerds-ufes.github.io/polka/
○ References

○ Tutorials (Mininet and FreeRouter)

○ Wireshark dissector

○ More to come…

https://nerds-ufes.github.io/polka/

Thank you for attention !

Rafael Guimarães

rafaelg@ifes.edu.br

* This work was a recipient of the 2021 Google Research Scholar and the

2022 Intel Connectivity Research Grant (Fast Forward Initiative) Awards, and

Received funds from CAPES (Finance Code 001), CNPq, FAPESP, FAPES, CTIC, and RNP.

mailto:magnos.martinello@ufes.br

Ok… Why should I use PolKA?

● One good reason…
… It is easy to setup paths/tunnels!

● It has some interesting properties that enable innovative applications.

○ Ex: multicast communication model support, multipath routing, failure
protection, Proof of Transit, telemetry…

● Open source implementation in software and in hardware

○ RARE/FreeRtr

48ConclusionsApplicationsPrototypeDesignProposalMotivation

