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● Data-Intensive Science (DIS) requirements :
○ High-speed WAN networks 
○ Massive data transfer & Large number of flows
○ E2E reliability and performance (traffic engineering) 
○ Multiple domains

*Figure from prof. Harvey Newman 
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Bottlenecks in traditional solutions 

● DIS requirements:
○ High-speed WAN networks 
○ Massive data transfer &  Large number of flows
○ E2E reliability
○ Multiple domains

● Table-based forwarding bottlenecks:
○ Set of shortest paths → Traffic Engineering
○ Large number of states → Scalability
○ Latency for path configuration → Agility 
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Motivation

● DIS requirements:
○ High-speed WAN networks 
○ Massive data transfer & Large number of flows
○ E2E reliability
○ Multiple domains

● Table-based forwarding bottlenecks:
○ Set of shortest paths → Traffic Engineering
○ Large number of states → Scalability
○ Latency for path configuration → Agility 

● Alternative to tackle this: Source Routing (SR)
○ A source specifies a path and adds a route label 

to the packet header.
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● Traditional way: List-based SR (LSR)
○ Path: a list of ports or addresses.
○ Each node performs a pop.

● Most remarkable protocol: SEGMENT ROUTING

Source Routing (SR)
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● Traditional way: List-based SR (LSR)
○ Path: a list of ports or addresses.
○ Each node performs a pop.

● Most remarkable protocol: SEGMENT ROUTING

● Limitations :
○ Expensive equipment & proprietary implementations

○ Still depends on tables in the core nodes (MPLS)

○ Variable-length of headers (and big headers for both SRV4 and SRv6)

○ No multicast* 

Source Routing (SR)
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https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2019/pdf/BRKIPM-2249.pdf
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PolKA Proposal
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● A Source Routing approach that meets the requirements:

● PolKA: Polynomial Key-based Architecture for Source Routing
○ Polynomial Residue Number System (RNS)
○ Chinese Remainder Theorem (CRT)
○ Packet forwarding based on mod operation: remainder of division

support in 
prog. switches

topology agnostic
multipath routing

no tables in 
the core

fixed length 
header

open source/
interoperable
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How does Polynomial Key-based Architecture work?

● Three polynomials: 

○ routeID: a route identifier calculated using the CRT.

○ nodeID: to identify each core node.

- Irreducible polynomial which is a prime number representation in GF2

○ portID: to identify the port or a set of ports on each core node.

● The forwarding uses a mod operation (remainder of division):
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portID = < routeID >
nodeID
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Simple example of how PolKA works

● Hosts are connected to edge switches.

● Edges are connected to a fabric of core switches.
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Configuration phase of PolKA network

● In a network set up phase, the Controller assigns irreducible polynomials 
to core switches (nodeIDs).

● Port labels are represented as binary polynomials (portIDs).
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Selecting a path for flow assignment  

● The Controller chooses a path for a specific flow (proactively or reactively):
○ A set of switches: {0011,0111,1011}
○ and their output ports: {1 , 10, 110}

ConclusionsApplicationsPrototypeDesignProposalMotivation 1717



Nodes and ports in their polynomial representation

● The Controller chooses a path for a specific flow:
○ A set of switches: {0011,0111,1011}
○ and their output ports: {1 , 10, 110}
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nodeID polynomials

portID polynomials
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● The Controller calculates the routeID using CRT:
○ Complexity:                     , where

Computing the route-id with CRT
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Calculate routeID with CRT

nodeID polynomials

portID polynomials
R = 10000

routeID
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● The Controller calculates the routeID using CRT:
○ Complexity:                     , where

● Forwarding:

 Packet forwarding by mod operation
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Calculate routeID with CRT

1 = <10000>
0011

10 = <10000>
0111

110 = <10000>
1011

R = 10000

routeID

portID = < routeID >
nodeID

 

nodeID polynomials

portID polynomials
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Installation of rules at the edges
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Encapsulation 
of routeID

Desancapsulation 
of routeID

● The Controller installs rules at the edges to add/remove routeIDs.
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Ingress edge adds the labels 

● When packets arrive, an action at ingress embeds routeID into the packets.
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Packet forwarding at the core node

● Forwarding using mod operation: <10000>
0011

   = 1 → output port

● Stateless core nodes with no routeID rewrite! No tables !
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10000
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● Forwarding using mod operation: <10000>
0111

   = 10 →  output port

● No routeID rewrite! Tableless routing at stateless core !
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10000

Packet forwarding at the core node
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● Forwarding using mod operation: <10000>
1011

   = 110 → output port

● No routeID rewrite! No tables!
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10000

Packet forwarding at the core node
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Egress edge removes the label 

● Finally, an action at edge egress node removes routeID.
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PolKA is agnostic of legacy protocols 

● Packet is delivered to the application in a transparent manner.
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How to implement PolKA’s in high speed line rate?

● P4 language does not natively support the mod operation.

● CRC hardware (Cyclic Redundancy Check) offers polynomial mod. 

○ The Tofino Native Architecture (TNA) supports custom CRC polynomials.

○ Line rate MOD computation = 2 SHIFTs + 1 CRC + 2 XORs
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Timeline

DesignProposal

2020 2021
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hardware

Emulated 
prototype in 
Mininet 

ONDM paper
Deploy @RARE

PolKA data plane 
implementation in 
intercontinental 
testbed

Hardware 
prototype in 
Tofino

PolKA received the 2021 
Google Research Scholar Award

2022

M-PolKA paper
IEEE TNSM

Extension to 
multipath SR for 
reliable 
communications

PolKA@pangr
IETF 113

Lightning Talk
Path Aware 
Networking 

Integration with
RARE+FreeRtr

PolKA data & 
control plane 
implementation + 
integration 

Emulated prototype 
in FreeRtr &

Hardware prototype 
in Tofino w/ FreeRtr 
control plane

M-PolKA received the Intel Connectivity 
Research Grant (Fast Forward Initiative)

PolKA@Global 
P4 Lab

Deployment 
@Caltech SDN  
Lab   

Talk at  
LHC-ONE

PolKA Demo   
  at SC-22

M-PolKA talk at 
ONF 

Proof-of-Transit 
paper IEEE NetSoft 

PolKA Demo at 
SC-23

Innovative apps:
 

●Resilient routing with 
security compliance

● Inband Network 
Telemetry

● Optimal load 
balancing by G2
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Innovations to be demonstrated
● Data plane

○ Source Routing with Stateless Core
○ Forwarding at line rate by reusing CRC in P4 programmable switches

● Control plane
○ Easy to configure tunnels
○ Integrated in the FreeRtr platform 

● Potential to support:
○ Transfer of big data streams with aggregation of multiple flows
○ Dynamic traffic steering configured at the edge  
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● Big data streams at 100 Gbps 
○ PolKA@ Caltech P4 lab testbed
○ Multiple aggregated TCP flows steered to pre-configured tunnels 

■ A route label represents paths in the underlay network

● Multiple big data streams to achieve more than 100 Gbps
○ PolKA@ Caltech P4 lab testbed at the SC 23
○ Multiple aggregated TCP flows from different computers steering traffic to 

pre-configured tunnels
■ A route label represents paths in the underlay network

Demonstrations  
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Big Data streams over PolKA tunnels at 100 Gbps in Caltech   

Big data streams over PolKA tunnels at 100 Gbps
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https://drive.google.com/file/d/1wZrdAxIC8DutXG_KZ7oxnU0AQibnMvHm/view


Big Data streams over PolKA tunnels at 100 Gbps in Caltech   
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https://docs.google.com/file/d/1wZrdAxIC8DutXG_KZ7oxnU0AQibnMvHm/preview


Big Data streams over PolKA tunnels at Caltech Booth   
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Big Data streams over PolKA tunnels at Caltech Booth   

36



Big Data streams over PolKA tunnels at Caltech Booth   
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Big Data streams over PolKA tunnels at Caltech Booth   
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sharing the 
same path



Big Data streams over PolKA tunnels at Caltech Booth   
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Big Data streams over PolKA tunnels at Caltech Booth   
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Take away messages 
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● It is feasible to deploy PolKA in high-performance programmable 
network equipment by reusing CRC hardware.
○ PolKA deployment in Caltech P4 lab testbed demonstrated its performance 

achieving transfer rate > 100 Gbps to multiple aggregated flows (TCP)

● Easy to configure PolKA tunnels with a common standard (CLI ) or REST API 

● Potential to support  
○ Big pipes/tunnels configured in a underlay network

○ Massive data transfer with aggregation of a large number of large flows

○ Flow Steering  exploring PolKA properties (e.g. stateless core nodes)  

■ Explicit path and TE both at the edge 
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PolKA: Github
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● https://nerds-ufes.github.io/polka/
○ References

○ Tutorials (Mininet and FreeRouter)

○ Wireshark dissector

○ More to come…

https://nerds-ufes.github.io/polka/


Thank you for attention !

Rafael Guimarães  
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Ok… Why should I use PolKA?

● One good reason…
… It is easy to setup paths/tunnels!

● It has some interesting properties that enable innovative applications.

○ Ex: multicast communication model support, multipath routing, failure 
protection, Proof of Transit,  telemetry…

● Open source implementation in software and in hardware

○ RARE/FreeRtr
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